Patrones espacio-temporales en la abundancia y biomasa de peces loro (Perciformes: Scaridae) en la costa norte de la República Dominicana
##plugins.themes.bootstrap3.article.main##
Resumen
Los arrecifes de coral en la República Dominicana han experimentado un declive acelerado debido a una serie de estresores locales y globales. La extracción comercial de peces loros (géneros Scarus y Sparisoma) ha llevado a la reducción de las poblaciones de estas especies y a la degradación de los arrecifes de coral debido al papel central que tienen estos organismos en el control del crecimiento de algas. En un intento de revertir este problema, las autoridades ambientales establecieron vedas para estas especies en 2017, 2021 y 2023, cada una con una duración de dos años. Sin embargo, la necesidad de líneas base que permitan entender la variabilidad espacial y temporal natural de estas poblaciones, dificulta cualquier intento de evaluación de la efectividad de las regulaciones. En este trabajo se presentan los resultados de un programa de monitoreo orientado a evaluar la variabilidad espacial y temporal de estas especies a lo largo de la costa norte de la República Dominicana. Para ello utilizamos un diseño espacial jerárquicamente anidado cubriendo dos escalas: (1) localidad (cientos de kilómetros) como factor aleatorio con tres niveles (Punta Rucia, Sosúa y Samaná) y sitios anidados (cientos de metros) dentro de localidad, cada uno monitoreado tres veces al año. En cada sitio se monitorearon 5 transectos de 30 x 2 m ubicados en el contorno del arrecife sobre los cuales se estimó la abundancia de peces loro siguiendo el protocolo de AGRRA. Las tendencias temporales de los ensamblajes de peces fueron variables a escala de sitios en 2021 (Permanova, gl = 8, F = 2.3573, p-valor = 0.001, CV = 19.51) y 2022 (Permanova, gl = 4, F = 2.7869, p-valor = 0.001, CV = 20.97), indicando que estas especies son altamente dinámicas en espacio y tiempo. Nuestros resultados resaltan la importancia del entendimiento de la variabilidad espacial y temporal de los peces loro, si se quiere diseñar mejores medidas que ayuden a su efectiva protección en el país.
##plugins.themes.bootstrap3.article.details##
peces herbívoros, arrecifes de coral, monitoreo, veda, Caribe central
Agudo-Adriani, E. A., Cappelletto, J., Cavada-Blanco, F., & Croquer, A. (2019). Structural complexity and benthic cover explain reef-scale variability of fish assemblages in Los Roques National Park, Venezuela. Frontiers in Marine Science, 6, 690. https://doi.org/10.3389/fmars.2019.00690
Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M., & Watkinson, A. R. (2009). Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proceedings of the Royal Society B: Biological Sciences, 276(1669), 3019-3025. https://doi.org/10.1098/rspb.2009.0339
Alvarez-Filip, L., Gill, J. A., Dulvy, N. K., Perry, A. L., Watkinson, A. R., & Côté, I. M. (2011). Drivers of region-wide declines in architectural complexity on Caribbean reefs. Coral reefs, 30, 1051–1060. https://doi.org/10.1007/s00338-011-0795-6
Alvarez-Filip, L., González-Barrios, F. J., Pérez-Cervantes, E., Molina-Hernández, A., & Estrada-Saldívar, N. (2022). Stony coral tissue loss disease decimated Caribbean coral populations and reshaped reef functionality. Communications Biology, 5(1), 440. https://doi.org/10.1038/s42003-022-03398-6
Anderson, M. J. (2001). A new method for non‐parametric multivariate analysis of variance. Austral ecology, 26(1), 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070
Anderson, M., & Braak, C. T. (2003). Permutation tests for multi-factorial analysis of variance. Journal of statistical computation and simulation, 73(2), 85–113. https://doi.org/10.1080/00949650215733
Anderson, M. J., & Walsh, D. C. (2013). PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing?. Ecological monographs, 83(4), 557–574. https://doi.org/10.1890/12-2010.1
Beger, M., Jones, G. P., & Munday, P. L. (2003). Conservation of coral reef biodiversity: a comparison of reserve selection procedures for corals and fishes. Biological Conservation, 111(1), 53–62. https://doi.org/10.1016/S0006-3207(02)00249-5
Bellwood, D. R., Goatley, C. H. R., Brandl, S. J., & Bellwood, O. (2014). Fifty million years of herbivory on coral reefs: fossils, fish and functional innovations. Proceedings of the Royal Society B: Biological Sciences, 281(1781), 20133046. https://doi.org/10.1098/rspb.2013.3046
Bellwood, D. R., Streit, R. P., Brandl, S. J., & Tebbett, S. B. (2019). The meaning of the term ‘function’ in ecology: A coral reef perspective. Functional Ecology, 33(6), 948–961. https://doi.org/10.1111/1365-2435.13265
Brander, L. M., Van Beukering, P., & Cesar, H. S. (2007). The recreational value of coral reefs: a meta-analysis. Ecological Economics, 63(1), 209-218. https://doi.org/10.1016/j.ecolecon.2006.11.002
Buckman, N. S., & Ogden, J. C. (1973). Territorial behavior of the striped parrotfish Scarus croicensis Bloch (Scaridae). Ecology, 54(6), 1377–1382. https://doi.org/10.2307/1934202
Burkepile, D. E., Adam, T. C., Roycroft, M., Ladd, M. C., Munsterman, K. S., & Ruttenberg, B. I. (2019). Species-specific patterns in corallivory and spongivory among Caribbean parrotfishes. Coral Reefs, 38, 417–423. https://doi.org/10.1007/s00338-019-01808-6
Burkepile, D. E., Rasher, D. B., Adam, T. C., Hoey, A. S., & Hay, M. E. (2018). Functional variation among parrotfishes: Are they complementary or redundant?. In Hoey, A. S., & Bonaldo, R. M. (Ed.) Biology of Parrotfishes (pp. 134–160). CRC Press.
Burkepile, D. E., & Hay, M. E. (2008). Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proceedings of the National Academy of Sciences, 105(42), 16201–16206. https://doi.org/10.1073/pnas.080194610
Burkepile, D. E., & Hay, M. E. (2009). Nutrient versus herbivore control of macroalgal community development and coral growth on a Caribbean reef. Marine Ecology Progress Series, 389, 71–84. https://doi.org/10.3354/meps08142
Burkepile, D. E., & Hay, M. E. (2010). Impact of herbivore identity on algal succession and coral growth on a Caribbean reef. PloS one, 5(1), e8963. https://doi.org/10.1371/journal.pone.0008963
Campbell, S. J., Edgar, G. J., Stuart‐Smith, R. D., Soler, G., & Bates, A. E. (2018). Fishing‐gear restrictions and biomass gains for coral reef fishes in marine protected areas. Conservation Biology, 32(2), 401–410. https://doi.org/10.1111/cobi.12996
Cano, I., Sellares-Blasco, R. I., Lefcheck, J. S., Villalpando, M. F., & Croquer, A. (2021). Effects of herbivory by the urchin Diadema antillarum on early restoration success of the coral Acropora cervicornis in the central Caribbean. Journal of Experimental Marine Biology and Ecology, 539, 151541. https://doi.org/10.1016/j.jembe.2021.151541
Carpenter, K. E., Abrar, M., Aeby, G., Aronson, R. B., Banks, S., Bruckner, A., Chiriboga A., Cortés J., Delbeek, J. C., Devantier, L., Edgar G. J., Edwards A. J., Fenner D., Guzmán H. M., Hoeksema, B. W., Hodgson, G., Johan, O., Licuanan, W. Y., Livingstone, S. R., ... & Wood, E. (2008). One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science, 321(5888), 560–563. https://doi.org/10.1126/science.1159196
Clarke, K. R., & Warwick, R. M. (2001). Change in marine communities. An approach to statistical analysis and interpretation, 2, 1–168.
Cortés-Useche, C., Calle-Triviño, J., Sellares-Blasco, R., Luis-Báez, A., & Arias-González, J. E. (2018). An updated checklist of the reef fishes of the Southeastern Reefs Marine Sanctuary of the Dominican Republic. Revista mexicana de biodiversidad, 89(2), 382–392. https://doi.org/10.22201/ib.20078706e.2018.2.2149
Cortés-Useche, C., Muñiz-Castillo, A. I., Calle-Triviño, J., Yathiraj, R., & Arias-González, J. E. (2019). Reef condition and protection of coral diversity and evolutionary history in the marine protected areas of Southeastern Dominican Republic. Regional Studies in Marine Science, 32, 100893. https://doi.org/10.1016/j.rsma.2019.100893
Croquer, A., Zambrano S., Irazabal, I., & Torres, R. (2022). Factores globales y locales que inciden sobre la degradación de los arrecifes coralinos: una revisión para la República Dominicana. AULA Revista de Humanidades y Ciencias Sociales, 68(1), 31–60.
Davis, K., Carlson, P. M., Lowe, C. G., Warner, R. R., & Caselle, J. E. (2017). Parrotfish movement patterns vary with spatiotemporal scale. Marine Ecology Progress Series, 577, 149–164. https://doi.org/10.3354/meps12174
Ecoutin, J. M., Simier, M., Albaret, J. J., Laë, R., Raffray, J., Sadio, O., & de Morais, L. T. (2014). Ecological field experiment of short-term effects of fishing ban on fish assemblages in a tropical estuarine MPA. Ocean & Coastal Management, 100, 74–85. https://doi.org/10.1016/j.ocecoaman.2014.08.009
Estrada-Saldívar, N., Molina-Hernández, A., Pérez-Cervantes, E., Medellín- Maldonado, F., González-Barrios, F. J., & Alvarez-Filip, L. (2020). Reef-scale impacts of the stony coral tissue loss disease outbreak. Coral Reefs, 39, 861–866. https://doi.org/10.1007/s00338-020-01949-z
Fisher, R., O’Leary, R. A., Low-Choy, S., Mengersen, K., Knowlton, N., Brainard, R. E., & Caley, M. J. (2015). Species richness on coral reefs and the pursuit of convergent global estimates. Current Biology, 25(4), 500–505.
Glynn, P. W., & Manzello, D. P. (2015). Bioerosion and Coral Reef Growth: A Dynamic Balance. In: Birkeland, C. (eds) Coral Reefs in the Anthropocene. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7249-5_4
Hall, A. E., Sievers, K. T., & Kingsford, M. J. (2023). Conservation benefits of no-take marine reserves outweigh modest benefits of partially protected areas for targeted coral reef fishes. Coral Reefs, 42(2), 319–333. https://doi.org/10.1007/s00338-023-02344-0
Helfman, G. S. (1986). Fish behavior by day, night and twilight. In Pitcher, T.J. (eds) The Behaviour of Teleost Fishes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8261-4_14
Hoegh-Guldberg, O., Kennedy, E. V., Beyer, H. L., McClennen, C., & Possingham, H. P. (2018). Securing a long-term future for coral reefs. Trends in Ecology & Evolution, 33(12), 936–944.
Hughes, T. P., Rodrigues, M. J., Bellwood, D. R., Ceccarelli, D., Hoegh-Guldberg, O., McCook, L., & Willis, B. (2007). Phase shifts, herbivory, and the resilience of coral reefs to climate change. Current biology, 17(4), 360–365.
IUCN. (2023). The IUCN Red List of Threatened Species. Versión 2023-1. https://www. iucnredlist.org. [Revisado en noviembre de 2023].
Knowlton, N., Brainard, R. E., Fisher, R., Moews, M., Plaisance, L., & Caley, M. J. (2010). Coral reef biodiversity. Life in the world’s oceans: diversity distribution and abundance, 65–74.
Lang, J. C., Marks, K. W., Kramer, P. A., Kramer, P. R., & Ginsburg, R. N. (2010). AGRRA protocols version 5.4. Atlantic and Gulf Rapid Reef Assessment Program, Florida, USA, 1–31.
Loh, T. L., McMurray, S. E., Henkel, T. P., Vicente, J., & Pawlik, J. R. (2015). Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals. PeerJ, 3, e901. https://doi.org/10.7717/peerj.901
McManus, J. W., Menez, L. A., Kesner-Reyes, K. N., Vergara, S. G., & Ablan, M. C. (2000). Coral reef fishing and coral-algal phase shifts: implications for global reef status. ICES Journal of Marine Science, 57(3), 572–578. https://doi.org/10.1006/jmsc.2000.0720
McManus, J. W., & Polsenberg, J. F. (2004). Coral–algal phase shifts on coral reefs: ecological and environmental aspects. Progress in Oceanography, 60(2–4), 263–279. https://doi.org/10.1016/j.pocean.2004.02.014
Medellín-Maldonado, F., Cruz-Ortega, I., Pérez-Cervantes, E., Norzogaray-López, O., Carricart- Ganivet, J. P., López-Pérez, A., & Alvarez-Filip, L. (2023). Newly deceased Caribbean reef-building corals experience rapid carbonate loss and colonization by endolithic organisms. Communications Biology, 6(1), 934.
Moberg, F., & Folke, C. (1999). Ecological goods and services of coral reef ecosystems. Ecological economics, 29(2), 215–233.
Munsterman, K. S., Allgeier, J. E., Peters, J. R., & Burkepile, D. E. (2021). A view from both ends: shifts in herbivore assemblages impact top-down and bottom-up processes on coral reefs. Ecosystems, 24, 1702–1715. https://doi.org/10.1007/s10021-021-00612-0
Norström, A. V., Nyström, M., Lokrantz, J., & Folke, C. (2009). Alternative states on coral reefs: beyond coral–macroalgal phase shifts. Marine ecology progress series, 376, 295–306. https://doi.org/10.3354/meps07815
Ogden, J. C., & Buckman, N. S. (1973). Movements, foraging groups, and diurnal migrations of the striped parrotfish Scarus croicensis Bloch (Scaridae). Ecology, 54(3), 589–596. https://doi.org/10.2307/1935344
Perry, C. T., & Alvarez‐Filip, L. (2019). Changing geo‐ecological functions of coral reefs in the Anthropocene. Functional Ecology, 33(6), 976–988. https://doi.org/10.1111/1365-2435.13247
Pickholtz, R., Kiflawi, M., Buba, Y., Chaikin, S., Gavriel, T., Lapid, G., Lazarus, M., Malamud, S., Marom, N., Marom, S., Nieger-Rachmilevitz, M., Olsson, K., Perevolotsky, T., Bat-Sheva Rothman, S., Salingrè, S., Shapira, N., Sternbach, B., Wandel, H., & Belmaker, J. (2023). Confronting the ‘nocturnal problem’in coral reefs: sleeping site selection and cocoon formation in parrotfishes. Coral Reefs, 42, 811–825. https://doi.org/10.1007/s00338-023-02389-1
Reaka, M. L., & Lombardi, S. A. (2011). Hotspots on global coral reefs. In Zachos, F., Habel, J. (eds) Biodiversity Hotspots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20992-5_24
Reaka-Kudla, M. L. (2005). Biodiversity of Caribbean coral reefs. In: Miloslavich, P., and E. Klein (eds.), Caribbean Marine Biodiversity, pp. 259–276. Des Tech Publishers, Lancaster, PA.
Roberts, C. M. (1995). Effects of fishing on the ecosystem structure of coral reefs. Conservation biology, 9(5), 988–995. https://doi.org/10.1046/j.1523-1739.1995.9051332.x-i1
Rochet, M. J., & Trenkel, V. M. (2003). Which community indicators can measure the impact of fishing? A review and proposals. Canadian Journal of Fisheries and Aquatic Sciences, 60(1), 86–99. https://doi.org/10.1139/f02-164
Rooker, J. R., & Dennis, G. D. (1991). Diel, lunar and seasonal changes in a mangrove fish assemblage off southwestern Puerto Rico. Bulletin of Marine Science, 49(3), 684–698.
Sellares-Blasco, R. I. S., Croquer, A., Villalpando, M. F., Valdez-Trinidad, A., Shamir, O., Delance, J., & Guendulain-García, S. D. (2023). First Quantitative Assessment of Benthic and Fish Assemblages of Silver Bank, Dominican Republic. Caribbean Journal of Science, 53(2), 258–272. https://doi.org/10.18475/cjos.v53i2.a9
Shantz, A. A., Ladd, M. C., & Burkepile, D. E. (2020). Overfishing and the ecological impacts of extirpating large parrotfish from Caribbean coral reefs. Ecological Monographs, 90(2), e01403. https://doi.org/10.1002/ecm.1403
Steneck, R. S., & Torres, R. (2023). Trends in Dominican Republic Coral Reef Biodiversity 2015–2022. Diversity, 15(3), 389. https://doi.org/10.3390/d15030389
Sully, S., Hodgson, G., & van Woesik, R. (2022). Present and future bright and dark spots for coral reefs through climate change. Global change biology, 28(15), 4509–4522. https://doi.org/10.1111/gcb.16083
Szmant, A. M. (2002). Nutrient enrichment on coral reefs: is it a major cause of coral reef decline?. Estuaries, 25, 743-766. https://doi.org/10.1007/BF02804903
Team, R. C. (2000). R language definition. Vienna, Austria: R foundation for statistical computing, 3(1).
Valentine, J. F., & Heck, K. L. (2005). Perspective review of the impacts of overfishing on coral reef food web linkages. Coral Reefs, 24, 209–213. https://doi.org/10.1007/s00338-004-0468-9
Wakwella, A., Mumby, P. J., & Roff, G. (2020). Sedimentation and overfishing drive changes in early succession and coral recruitment. Proceedings of the Royal Society B, 287(1941), 20202575. https://doi.org/10.1098/rspb.2020.2575
Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J., & Graham, N. A. (2019). Coral reef ecosystem services in the Anthropocene. Functional Ecology, 33(6), 1023–1034. https://doi.org/10.1111/1365-2435.13331
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Cómo citar
Métricas del artículo
- 323 Vistas Resumen vistas
- 151 Descargas PDF Descargas
- 28 Vistas Html Vistas